
Chris Fallin (Principal Software Engineer @ Fastly)

wevaling the wasms: AOT JS Compilation
Or: Stuffing a Dynamic Language onto a Very Static Platform

The Problem

The Problem

Server

HTTP

Requests

The Problem

Server

HTTP

Requests

Site 1

Site 2

Site 3

The Problem

Server

HTTP

Requests

Site 1

Site 2

Site 3

Untrusted Code!

The Problem

Server

HTTP

Requests

Site 1

Site 2

Site 3

Untrusted Code!
• Site 1 should not interfere with Site 2

• Site 1 should not interfere with host 
or infrastructure

• Request 1 on Site 1 should not 
interfere with request 2 on Site 1

The Problem
Server

Site 1

Site 2

Site 3

The Problem
Server

Site 1

Site 2

Site 3

vm1

vm2

vm3

Virtual machines?

The Problem
Server

Site 1

Site 2

Site 3

vm2

vm3

Virtual machines?

+ Extremely well-tested isolation boundary 
(trusted by cloud providers, …)

+ Conceptually simple: “single-tenant 
software stack” in each VM

vm1

The Problem
Server

Site 1

Site 2

Site 3

vm2

vm3

Virtual machines?

+ Extremely well-tested isolation boundary 
(trusted by cloud providers, …)

+ Conceptually simple: “single-tenant 
software stack” in each VM

- Horrible overhead: RAM + disk for full 
 software stack + kernel in each VM!

- Fixed resource partitioning: cannot 
dynamically rebalance RAM if one 
site has spiky demand

- Doesn’t address “request isolation”

vm1

The Problem
Server

Site 1

Site 2

Site 3

PID 1001

PID 1002

Separate processes in containers?

PID 1000

The Problem
Server

Site 1

Site 2

Site 3

PID 1001

PID 1002

Separate processes in containers?

+ Fairly well-tested isolation boundary 
(less than VMs, but emerging standard)

+ Software stack also looks similar to VM 
case: conceptually a “separate server” 
for every site

PID 1000

The Problem
Server

Site 1

Site 2

Site 3

PID 1001

PID 1002

Separate processes in containers?

+ Fairly well-tested isolation boundary 
(less than VMs, but emerging standard)

+ Software stack also looks similar to VM 
case: conceptually a “separate server” 
for every site

- Still too much overhead

- Processes must always be running for 
fast “cold start”

- Still no per-request isolation

PID 1000

The Problem
Server

Site 1

Site 2

PID 12345

PID 45678

New process spawned for every request?

Site 1
PID 1001GET /a

POST /b

GET /

The Problem
Server

Site 1

Site 2

PID 12345

PID 45678

New process spawned for every request?

+ This is a classic! Ask anyone from 90s webdev 
about “cgi-bin scripts” and Perl

+ Potentially good isolation/security, if properly 
 sandboxed; good per-request isolation 
 (fresh state for every request)

Site 1
PID 1001GET /a

POST /b

GET /

The Problem
Server

Site 1

Site 2

PID 12345

PID 45678

New process spawned for every request?

+ This is a classic! Ask anyone from 90s webdev 
about “cgi-bin scripts” and Perl

+ Potentially good isolation/security, if properly 
 sandboxed; good per-request isolation 
 (fresh state for every request)

- Horrendous latency: OS process startup + 
binary load + script parse + connect to DB + 
parse configuration + initialize the universe + …

- Nonstarter for competitive modern web APIs

Site 1
PID 1001GET /a

POST /b

GET /

The Problem: Desired Properties

• We want good isolation for security: 
- Code for each site lives in some sort of sandbox with minimal attack surface 
- Code for each request starts fresh, with no “leftover state” that could leak 
 private data from other user

The Problem: Desired Properties

• We want good isolation for security: 
- Code for each site lives in some sort of sandbox with minimal attack surface 
- Code for each request starts fresh, with no “leftover state” that could leak 
 private data from other user

• We want extremely low latency: 
- Can’t afford to start a VM or a new OS-level process 
- Should strive to reuse high-cost setup (e.g., parsing the script)

The Problem: Desired Properties

• We want good isolation for security: 
- Code for each site lives in some sort of sandbox with minimal attack surface 
- Code for each request starts fresh, with no “leftover state” that could leak 
 private data from other user

• We want extremely low latency: 
- Can’t afford to start a VM or a new OS-level process 
- Should strive to reuse high-cost setup (e.g., parsing the script)

• We want good utilization (pack many sites onto one server): 
- Can’t afford a few GB of RAM for a VM for every site 
- Probably can’t afford an OS process for every site

The Problem: Desired Properties

• We want good isolation for security: 
- Code for each site lives in some sort of sandbox with minimal attack surface 
- Code for each request starts fresh, with no “leftover state” that could leak 
 private data from other user

• We want extremely low latency: 
- Can’t afford to start a VM or a new OS-level process 
- Should strive to reuse high-cost setup (e.g., parsing the script)

• We want good utilization (pack many sites onto one server): 
- Can’t afford a few GB of RAM for a VM for every site 
- Probably can’t afford an OS process for every site

(for now!)

The Problem: Desired Properties
Server

Site 1

Site 2

Site 3

Every site served from a single “global” process?

+ No startup latency: load code once, share setup + 
long-lived resources 
- Code is always present + a single function call 
 away!

+ Conceptually, overhead of a site is just an object 
in some data structure

+ Conceptually, overhead of a request is just an 
object holding its state

+ Site software has a simple model: “just write a 
function” 
- This is Function as a Service

PID 1000

The Problem: Desired Properties

• We want good isolation for security: 
- Code for each site lives in some sort of sandbox with minimal attack surface 
- Code for each request starts fresh, with no “leftover state” that could leak 
 private data from other user

The Problem: Desired Properties

• We want good isolation for security: 
- Code for each site lives in some sort of sandbox with minimal attack surface 
- Code for each request starts fresh, with no “leftover state” that could leak 
 private data from other user

• Idea: what if there were a very simple “virtual CPU” to run the functions? 
- Give each function execution its own “memory” (array of a few KB or MB) 
- We could design it carefully to minimize attack surface —> good sandbox 
- Deterministic —> snapshots —> fast startup

The Problem: Desired Properties

!

The Problem: Desired Properties

!
Portable bytecode with low-level (byte-addressable) memory 
and explicit hostcall imports (capability sandboxing)

The Problem: Desired Properties

!
C/C++

Rust

Go

Swift

Kotlin

The Problem: Desired Properties

!
JavaScript

Python

The Problem: Desired Properties

!JavaScript

Python

pre-load function bytecode into memory image

Wasm Snapshotting

init()
 main =
 parseScript()
 request()
 execute(main)

Wasm Snapshotting

init()

request()

Wasm Snapshotting

init()

request()
wizer

request()

Wasm Snapshotting

init()

request()
wizer

request()

spidermonkey.wasm my_program.wasm

Wasm-based Request Isolation

• Spawn a new Wasm instance with its own memory for every request

init()

Wasm-based Request Isolation

• Spawn a new Wasm instance with its own memory for every request

• Virtual memory (copy-on-write) for 5-µs instantiation times

init()

Wasm-based Request Isolation

init()

request()
wizer

request()

• Spawn a new Wasm instance with its own memory for every request

• Virtual memory (copy-on-write) for 5-µs instantiation times

Wasm-based Request Isolation

init()

request()
wizer

request()

mmap
(per request)

• Spawn a new Wasm instance with its own memory for every request

• Virtual memory (copy-on-write) for 5-µs instantiation times

Wasm-based Request Isolation

init()

request()
wizer

request()

mmap
(per request)

• Spawn a new Wasm instance with its own memory for every request

• Virtual memory (copy-on-write) for 5-µs instantiation times
* actually madvise() if reusing a slot; 
 avoid taking process address space lock; 
 lots of work on reducing IPIs/TLB shootdowns; 
 lazy init of VM structs too; happy to talk more

* actually madvise() if reusing a slot; 
 avoid taking process address space lock; 
 lots of work on reducing IPIs/TLB shootdowns; 
 lazy init of VM structs too; happy to talk more

Wasm-based Request Isolation

init()

request()
wizer

request()

mmap
(per request)

• Spawn a new Wasm instance with its own memory for every request

• Virtual memory (copy-on-write) for 5-µs instantiation times

Interpreter-inside-Wasm-with-Snapshotting

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

Interpreter-inside-Wasm-with-Snapshotting

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

Interpreter-inside-Wasm-with-Snapshotting

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

Interpreter-inside-Wasm-with-Snapshotting

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

• JIT engine’s favorite activities

Interpreter-inside-Wasm-with-Snapshotting

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

• JIT engine’s favorite activities

• generate code at runtime

Interpreter-inside-Wasm-with-Snapshotting

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

• JIT engine’s favorite activities

• generate code at runtime

• manage stack frames manually,
implement O(1) unwind, on-stack
replacement, multi entry + return
points, jumps between IC stubs

Interpreter-inside-Wasm-with-Snapshotting

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

• JIT engine’s favorite activities

• generate code at runtime

• manage stack frames manually,
implement O(1) unwind, on-stack
replacement, multi entry + return
points, jumps between IC stubs

• Warm up and specialize code over
time (many executions/requests)

Aside: “JIT Hooks for Wasm”?

• Straightforward adaptation:

• Add a Wasm hostcall (or core feature) to add a new function at runtime
(accept only Wasm bytecode — preserve the sandboxing still)

• Work around other incongruities in machine model: O(n) unwind, tail calls
for IC stubs, just don’t do OSR, …

Aside: “JIT Hooks for Wasm”?

• Straightforward adaptation:

• Add a Wasm hostcall (or core feature) to add a new function at runtime
(accept only Wasm bytecode — preserve the sandboxing still)

• Work around other incongruities in machine model: O(n) unwind, tail calls
for IC stubs, just don’t do OSR, …

Aside: “JIT Hooks for Wasm”?

• Straightforward adaptation:

• Add a Wasm hostcall (or core feature) to add a new function at runtime
(accept only Wasm bytecode — preserve the sandboxing still)

• Work around other incongruities in machine model: O(n) unwind, tail calls
for IC stubs, just don’t do OSR, …

• Really impressive results: 2x-11x (similar to native ISA baseline-compiler)

Aside: “JIT Hooks for Wasm”?

• Straightforward adaptation:

• Add a Wasm hostcall (or core feature) to add a new function at runtime
(accept only Wasm bytecode — preserve the sandboxing still)

• Work around other incongruities in machine model: O(n) unwind, tail calls
for IC stubs, just don’t do OSR, …

• Really impressive results: 2x-11x (similar to native ISA baseline-compiler)

• Downside: requires test data and profiling run (nonstandard user experience)
or compiler-in-the-loop and saving state across requests (JIT data structures)

Fast Dynamic Languages: ICs for Late Binding

Fast Dynamic Languages: ICs for Late Binding

Key idea: late binding for execution semantics (dynamic types) 
becomes late binding in compilation strategy (indirect call via IC head)

CacheIR: Systematic Fast-Paths

• SpiderMonkey has a straight-line IR with specific 
“guard” (predicate) and “action” opcodes

• Engine is well-populated with many fast paths 
developed over the years

• Property accesses, including JS oddities (chain of prototype-chain guards)

• Special cases for calls to well-known functions (String.length(), etc)

• Hundreds of opcodes, ~hundreds-thousands of IC cases

• Let’s reuse this if we can!
See also: de Mooij et al. CacheIR: The Benefits of Structured Representation for Inline Caches. SPLASH 2023.

Compilation Levels

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Baseline
Compiler

JS bytecode +
IC stub cases compiled dynamic

dispatch
within one op

(via IC) compiled yes

Optimizing
Compiler

JS bytecode +
warmed-up

ICs
compiled inlined entire function compiled yes

Step 1: Portable Baseline Interpreter (PBL)

• New interpreter tier in SpiderMonkey: no codegen, but run ICs via interpreter

Step 1: Portable Baseline Interpreter (PBL)

• New interpreter tier in SpiderMonkey: no codegen, but run ICs via interpreter

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Step 1: Portable Baseline Interpreter (PBL)

• New interpreter tier in SpiderMonkey: no codegen, but run ICs via interpreter

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Portable
Baseline

Interpreter
JS bytecode interpreter dynamic

dispatch none interpreter no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Step 1: Portable Baseline Interpreter (PBL)

• New interpreter tier in SpiderMonkey: no codegen, but run ICs via interpreter

• Key insight: this shifts the tradeoff; not all ICs will be profitable anymore 
—> “hybrid ICs”: (optionally) use ICs only for property accesses, calls

• This allows faster execution even for “code we have never met before” 
(eval() in production…)

• Implemented and upstreamed; used in production; 33% geomean speedup

https://bugzilla.mozilla.org/show_bug.cgi?id=1855321

Step 1: Portable Baseline Interpreter (PBL)

Bench Base PBL

Richards 164 280 (1.71x)
DeltaBlue 167 321 (1.92x)
Crypto 453 566 (1.25x)
RayTrace 498 786 (1.58x)
EarleyBoyer 712 1070 (1.50x)
RegExp 273 337 (1.23x)
Splay 1293 2147 (1.66x)
NavierStokes 684 763 (1.32x)
PdfJS 2220 2512 (1.31x)
Mandreel 189 233 (1.23x)
Gameboy 1479 1774 (1.20x)
CodeLoad 19765 18994 (0.96x)
Box2D 943 1328 (1.41x)

Overall 848 1127 (1.33x)

Step 1: Portable Baseline Interpreter (PBL)

• How does this help us compile JavaScript?!

JS Compilation

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Portable
Baseline

Interpreter
JS bytecode interpreter dynamic

dispatch none interpreter no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Baseline
Compiler

JS bytecode +
IC stub cases compiled dynamic

dispatch
within one op

(via IC) compiled yes

Optimizing
Compiler

JS bytecode +
warmed-up

ICs
compiled inlined entire function compiled yes

JS Compilation

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Portable
Baseline

Interpreter
JS bytecode interpreter dynamic

dispatch none interpreter no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Baseline
Compiler

JS bytecode +
IC stub cases compiled dynamic

dispatch
within one op

(via IC) compiled yes

Optimizing
Compiler

JS bytecode +
warmed-up

ICs
compiled inlined entire function compiled yes

JS Compilation

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Portable
Baseline

Interpreter
JS bytecode interpreter dynamic

dispatch none interpreter no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Baseline
Compiler

JS bytecode +
IC stub cases compiled dynamic

dispatch
within one op

(via IC) compiled yes

Optimizing
Compiler

JS bytecode +
warmed-up

ICs
compiled inlined entire function compiled yes

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Portable
Baseline

Interpreter
JS bytecode interpreter dynamic

dispatch none interpreter no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Baseline
Compiler

JS bytecode +
IC stub cases compiled dynamic

dispatch
within one op

(via IC) compiled yes

Optimizing
Compiler

JS bytecode +
warmed-up

ICs
compiled inlined entire function compiled yes
AOT: ✅

Compilation Phasing (“can we AOT?”)

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Portable
Baseline

Interpreter
JS bytecode interpreter dynamic

dispatch none interpreter no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Baseline
Compiler

JS bytecode +
IC stub cases compiled dynamic

dispatch
within one op

(via IC) compiled yes

Optimizing
Compiler

JS bytecode +
warmed-up

ICs
compiled inlined entire function compiled yes
AOT: ✅

AOT: ✅

Compilation Phasing (“can we AOT?”)

Key insight: collect a corpus of “common ICs” (once)

Level Data Required JS opcode
dispatch ICs Optimization

Scope
CacheIR
dispatch

Codegen at
Runtime?

Generic
Interpreter JS bytecode interpreter none none — no

Portable
Baseline

Interpreter
JS bytecode interpreter dynamic

dispatch none interpreter no

Baseline
Interpreter

JS bytecode +
IC stub cases interpreter dynamic

dispatch
within one op

(via IC) compiled yes

Baseline
Compiler

JS bytecode +
IC stub cases compiled dynamic

dispatch
within one op

(via IC) compiled yes

Optimizing
Compiler

JS bytecode +
warmed-up

ICs
compiled inlined entire function compiled yes
AOT: ✅

AOT: ✅

Compilation Phasing (“can we AOT?”)

Key insight: collect a corpus of “common ICs” (once) 
—> pushes PGO to engine developer, not engine user

Compiler Backend

• Great! Let’s write a compiler backend!

Compiler Backend

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

• JIT engine’s favorite activities

• generate code at runtime

• manage stack frames manually,
implement O(1) unwind, on-stack
replacement, multi entry + return
points, jumps between IC stubs

• Warm up and specialize code over
time (many executions/requests)

Compiler Backend

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

• JIT engine’s favorite activities

• generate code at runtime

• manage stack frames manually,
implement O(1) unwind, on-stack
replacement, multi entry + return
points, jumps between IC stubs

• Warm up and specialize code over
time (many executions/requests)

Compiler Backend

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

• JIT engine’s favorite activities

• generate code at runtime

• manage stack frames manually,
implement O(1) unwind, on-stack
replacement, multi entry + return
points, jumps between IC stubs

• Warm up and specialize code over
time (many executions/requests)

Wasm is a weird architecture —> maintenance burden concerns

Compiler Backend

• Secure!

• Wasm: Harvard architecture
(separate code space, no codegen)

• Wasm: first-class call stack (stack
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow

• Instance-per-request: no possible
state leakage between executions

• JIT engine’s favorite activities

• generate code at runtime

• manage stack frames manually,
implement O(1) unwind, on-stack
replacement, multi entry + return
points, jumps between IC stubs

• Warm up and specialize code over
time (many executions/requests)

Wasm is a weird architecture —> maintenance burden concerns 
… also, we already have an interpreter (PBL) with exactly the logic we want

Compiler Backend?

switch(*pc++) {
 case ADD:
 auto a = pop();
 auto b = pop();
 push(a + b);
 break;
 case RET:
 return pop();
}

ADD 
RET

func:

Compiler Backend?

switch(*pc++) {
 case ADD:
 auto a = pop();
 auto b = pop();
 push(a + b);
 break;
 case RET:
 return pop();
}

ADD 
RET

func:

func() {
 auto a = pop();
 auto b = pop();
 push(a + b);
 return pop();
}

Compiler Backend?

switch(*pc++) {
 case ADD:
 auto a = pop();
 auto b = pop();
 push(a + b);
 break;
 case RET:
 return pop();
}

ADD 
RET

func:

func() {
 auto a = pop();
 auto b = pop();
 push(a + b);
 return pop();
}

Key insight: Wasm is a small, introspectable, well-behaved IR; 
partial evaluation should be tractable (moreso than on native code)

Futamura Projections

• Given Program(Input) —> Output:

• Split Input into static and dynamic parts: Program(Static, Dynamic) = Output

• Curry Program with Static: PEval(Program, Static) -> Program*

• Then Program*(Dynamic) = Program(Static, Dynamic)

Futamura Projections

• Given Program(Input) —> Output:

• Split Input into static and dynamic parts: Program(Static, Dynamic) = Output

• Curry Program with Static: PEval(Program, Static) -> Program*

• Then Program*(Dynamic) = Program(Static, Dynamic)

• Interesting cases:

• First Futamura Projection: PEval(Interp, ProgramText) -> CompiledProgram

Futamura Projections

• Given Program(Input) —> Output:

• Split Input into static and dynamic parts: Program(Static, Dynamic) = Output

• Curry Program with Static: PEval(Program, Static) -> Program*

• Then Program*(Dynamic) = Program(Static, Dynamic)

• Interesting cases:

• First Futamura Projection: PEval(Interp, ProgramText) -> CompiledProgram

• Second Futamura Projection: PEval(PEval, Interp) -> Compiler

Futamura Projections

• Given Program(Input) —> Output:

• Split Input into static and dynamic parts: Program(Static, Dynamic) = Output

• Curry Program with Static: PEval(Program, Static) -> Program*

• Then Program*(Dynamic) = Program(Static, Dynamic)

• Interesting cases:

• First Futamura Projection: PEval(Interp, ProgramText) -> CompiledProgram

• Second Futamura Projection: PEval(PEval, Interp) -> Compiler

• Third Futamura Projection: PEval(PEval, PEval) -> InterpreterToCompilerCompiler

Futamura Projections

• Given Program(Input) —> Output:

• Split Input into static and dynamic parts: Program(Static, Dynamic) = Output

• Curry Program with Static: PEval(Program, Static) -> Program*

• Then Program*(Dynamic) = Program(Static, Dynamic)

• Interesting cases:

• First Futamura Projection: PEval(Interp, ProgramText) -> CompiledProgram

• Second Futamura Projection: PEval(PEval, Interp) -> Compiler

• Third Futamura Projection: PEval(PEval, PEval) -> InterpreterToCompilerCompiler

weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

• Very very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original

weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

• Very very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original

• Gives us a compiler “for free” once we have an interpreter

weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

• Very very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original

• Gives us a compiler “for free” once we have an interpreter

• Related work: GraalVM for JVM (TruffleRuby, …)

• Main distinction in abstraction level: AST interpreter using Graal classes vs.
general pre-existing interpreter in Wasm

Specialization Intrinsics

void call_function(function* f, int arg1, int arg2) {
 interp(f->bytecode, arg1, arg2);
}

void prepare_function(function* f) {
 weval::weval(
 &f->funcptr, &interp,
 ConstantMemory(f->bytecode),
 Runtime<int>(), Runtime<int>());
}

void call_function(function* f, …) {
 if (f->funcptr) f->funcptr(…);
 else interp(f->bytecode, …);
}

Specialization Intrinsics

void call_function(function* f, int arg1, int arg2) {
 interp(f->bytecode, arg1, arg2);
}

1. asynchronous request (“fill in this function pointer later”); integrates with wizening

2. specialized function behaves exactly the same as original interp()

3. for each argument, we provide constant value or “runtime”

Specialization Intrinsics

void interp(bytecode* pc) {

 switch (*pc++) {
 case OP1:
 …

 break;
 case OP2:
 …

 break;
 }
}

Specialization Intrinsics

void interp(bytecode* pc) {

 switch (*pc++) {
 case OP1:
 …

 break;
 case OP2:
 …

 break;
 }
}

void interp(bytecode* pc) {
 weval::push_context(pc);
 switch (*pc++) {
 case OP1:
 …
 weval::update_context(pc);
 break;
 case OP2:
 …
 weval::update_context(pc);
 break;
 }
}

Specialization Intrinsics

void interp(bytecode* pc) {
 weval::push_context(pc);
 switch (*pc++) {
 case OP1:
 …
 weval::update_context(pc);
 break;
 case OP2:
 …
 weval::update_context(pc);
 break;
 }
}

1. “No magic”: only expand code
where interpreter specifies via
context mechanism

2. Partially evaluate iterations of the
interpreter loop in a context-
sensitive way, where the context
is the bytecode PC

3. … and that’s it.

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…):

Generic Specialized
blocks: (Context, Block) -> Block 
values: (Context, Value) -> Value 
workqueue: (Context, Block)

The weval Transform

block3(…): block4(…): block5(…):

block6(…):

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…):

Generic Specialized
blocks: (Context, Block) -> Block 
values: (Context, Value) -> Value 
workqueue: (Context, Block)

1. Partially evaluate a block using
a runtime/constant lattice

block3(…): block4(…): block5(…):

block6(…):

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…):

Generic Specialized
blocks: (Context, Block) -> Block 
values: (Context, Value) -> Value 
workqueue: (Context, Block)

1. Partially evaluate a block using
a runtime/constant lattice

block3(…): block4(…): block5(…):

block6(…):

pub enum AbstractValue {
 /// "top" default value; undefined.
 Top,
 /// A value known at specialization time.
 Concrete(WasmVal),
 /// A value that points to memory known at specialization time,
 /// with the given offset.
 ConcreteMemory(MemoryBufferIndex, u32),
 /// A value only computed at runtime. The instruction that
 /// computed it is specified, if known.
 Runtime(Option<waffle::Value>),
}

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…):

Generic Specialized
blocks: (Context, Block) -> Block 
values: (Context, Value) -> Value 
workqueue: (Context, Block)

1. Partially evaluate a block using
a runtime/constant lattice

2. Track context as part of flow-
sensitive state; update at
intrinsics

3. At branches, enqueue targets
block3(…): block4(…): block5(…):

block6(…):

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…):

Generic Specialized
blocks: (Context, Block) -> Block 
values: (Context, Value) -> Value 
workqueue: (Context, Block)

block1(…):
 v1 = …
 v2 = (load opcode)
 switch v2, block2,
 block3, block4,
 block5

Context: PC 0

block3(…): block4(…): block5(…):

block6(…):

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

Generic Specialized
blocks: (Context, Block) -> Block 
values: (Context, Value) -> Value 
workqueue: (Context, Block)

block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

Context: PC 0

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

Generic Specialized
blocks: (Context, Block) -> Block 
values: (Context, Value) -> Value 
workqueue: (Context, Block)

block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

Context: PC 0

block5(…):

block6(…):

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

Generic Specialized
blocks: (Context, Block) -> Block 
values: (Context, Value) -> Value 
workqueue: (Context, Block)

block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

Context: PC 0

block5(…):

block6(…):

Context: PC 1

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

Generic

block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

Context: PC 0

block5(…):

block6(…):

Context: PC 1
block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

block5(…):

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

Generic

block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

Context: PC 0

block5(…):

block6(…):

Context: PC 1
block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

block5(…):

PC 0: ADD 
PC 1: GOTO 0

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

Generic

block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

Context: PC 0

block5(…):

block6(…):

Context: PC 1
block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

block5(…):

PC 0: ADD 
PC 1: GOTO 0

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

Generic

block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

Context: PC 0

block5(…):

block6(…):

Context: PC 1
block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

block5(…):

PC 0: ADD 
PC 1: GOTO 0

Resulting CFG is a convolution of interpreter’s CFG and bytecode’s CFG

The weval Transform
block1(…):
 v1 = …
 v2 = …
 switch v2, block2,
 block3, block4,
 block5

block2(…): block3(…): block4(…): block5(…):

block6(…):

Generic

block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

Context: PC 0

block5(…):

block6(…):

Context: PC 1
block1(…):
 v1 = …
 v2 = iconst 3
 goto block5

block5(…):

PC 0: ADD 
PC 1: GOTO 0

Resulting CFG is a convolution of interpreter’s CFG and bytecode’s CFG

🤯

A Note on SSA

• SSA validity is defined in terms of the dominator tree (def dominates uses)

• weval transform breaks dominance

• naive approach (worked at first!): convert to “maximal SSA” before transform

• all live values passed via phis/blockparams at every block edge; then use
only local values (“all other SSA is just an optimization of maximal SSA”)

• Much better: find “cut blocks” based on “highest ancestor with same
context” (property depends on position of ctx-change intrinsics)

• Reduced value-number count in output code by 5x!

Other Intrinsics for Performance

• An interpreter will keep state in memory (“IC registers”) because of dynamic
indexing; compiled code should be able to lift into SSA / dataflow in Wasm

• Intrinsics: 
 weval_read_reg(index)
 weval_write_reg(index, value)

• New intrinsics are OK when they have well-defined semantics and could be
polyfilled without weval transform

• Initially tried to implement “memory renaming” —> very fragile (pointer
escapes, semantics on calls?, …)

Value Specialization

• Ideally, implementation of a control-flow op looks like 
 
auto value = pop();
if (value) {
 pc = A;
 weval::update_context(pc);
 goto dispatch;
} else {
 pc = B;
 weval::update_context(pc);
 goto dispatch;
}

• Key property: edge to a different static block in bytecode should be a different static program point (otherwise edge
resolution / block linkup doesn’t work)

• “Switch” opcodes are problematic — load PC from a table

• offer a “specialize context N ways with i=0..N-1” intrinsic

Portable Specialization Requests and Time-Travel

• weval specialization request is (funcptr, args) tuple — plain old data,
independent of Wasm heap state

• Very important: bundle the content of constant memory, not just const ptr

• Collecting IC bodies: collect a bunch of weval requests, do them eagerly on
subsequent wevalings, and inject a “look up by arg string” hashtable

• Also: makes deterministic weval caching very nice (processing speed!)

Requirements on Interpreter

• Function-level control flow in interpreter must match source language

• Because weval specialization is function-to-function and Wasm functions are first-
class

• Often this means disabling an “inline call frame” optimization

• We can’t support source-language tail calls until Wasm does

• We can’t support O(1) exception unwind until Wasm does 
(… do O(n) unwind for now)

• Bytecode must remain constant, and PC must be statically context-sensitively
resolvable (no “indirect branch to arbitrary offset” opcode)

Other Optimizations

• By itself, weval removes opcode-dispatch overhead, and puts opcode cases
next to each other statically (—> opt opportunities), but still copy+pastes
inefficiencies and bloat into target code

• Good idea for faster code and faster weval processing: out-of-line special
cases

• (Ab)use C++ template parameters to build several versions of interp();
specialized version tailcalls into generic version (non-wevaled) for error
paths

Results
Bench Base PBL wevaled PBL

Richards 164 280 (1.71x) 444 (2.71x)
DeltaBlue 167 321 (1.92x) 435 (2.60x)
Crypto 453 566 (1.25x) 1231 (2.72x)
RayTrace 498 786 (1.58x) 827 (1.66x)
EarleyBoyer 712 1070 (1.50x) 1178 (1.65x)
RegExp 273 337 (1.23x) 421 (1.54x)
Splay 1293 2147 (1.66x) 2809 (2.17x)
NavierStokes 684 763 (1.32x) 1336 (1.95x)
PdfJS 2220 2512 (1.31x) 4150 (1.87x)
Mandreel 189 233 (1.23x) 399 (2.11x)
Gameboy 1479 1774 (1.20x) 3122 (2.11x)
CodeLoad 19765 18994 (0.96x) 17735 (0.90x)
Box2D 943 1328 (1.41x) 2134 (2.26x)

Overall 848 1127 (1.33x) 1654 (1.95x)

Results
Bench Base PBL wevaled PBL

Richards 164 280 (1.71x) 444 (2.71x)
DeltaBlue 167 321 (1.92x) 435 (2.60x)
Crypto 453 566 (1.25x) 1231 (2.72x)
RayTrace 498 786 (1.58x) 827 (1.66x)
EarleyBoyer 712 1070 (1.50x) 1178 (1.65x)
RegExp 273 337 (1.23x) 421 (1.54x)
Splay 1293 2147 (1.66x) 2809 (2.17x)
NavierStokes 684 763 (1.32x) 1336 (1.95x)
PdfJS 2220 2512 (1.31x) 4150 (1.87x)
Mandreel 189 233 (1.23x) 399 (2.11x)
Gameboy 1479 1774 (1.20x) 3122 (2.11x)
CodeLoad 19765 18994 (0.96x) 17735 (0.90x)
Box2D 943 1328 (1.41x) 2134 (2.26x)

Overall 848 1127 (1.33x) 1654 (1.95x)

Loop microbenchmark, latest optimizations, optimistic removal of some Wasm
overheads (typed funcref table bounds checks, stacklimit checks): 
 
~4x speedup 
(native baseline compiler: 5.33x)

What’s Left?

• “Fast dispatch” intrinsics — indirect calls in Wasm are very slow

• (sidenote: Igalia online-JIT emits direct calls to top IC when known)

• Intrinsics for operand stack — abstract-interpret push/pop

• Limited due to GC-safepoint constraints but still some opportunity

• Optimize Wasmtime/Cranelift with these workloads in mind

• Silly ABI hacks (pack i64s into i64x2 SIMD to get more arg registers…)

• … and build an optimizing JIT compiler with “cloud PGO”

Thanks! Questions?

