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wevaling the wasms: AOT JS Compilation
Or: Stuffing a Dynamic Language onto a Very Static Platform
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vm2

vm3

Virtual machines?

+ Extremely well-tested isolation boundary 
(trusted by cloud providers, …)


+ Conceptually simple: “single-tenant 
software stack” in each VM


- Horrible overhead: RAM + disk for full 
  software stack + kernel in each VM!


- Fixed resource partitioning: cannot 
dynamically rebalance RAM if one 
site has spiky demand


- Doesn’t address “request isolation”

vm1
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PID 1001

PID 1002

Separate processes in containers?

+ Fairly well-tested isolation boundary 
(less than VMs, but emerging standard)


+ Software stack also looks similar to VM 
case: conceptually a “separate server” 
for every site


- Still too much overhead


- Processes must always be running for 
fast “cold start”


- Still no per-request isolation

PID 1000
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Site 1

Site 2

PID 12345

PID 45678

New process spawned for every request?

+ This is a classic! Ask anyone from 90s webdev 
about “cgi-bin scripts” and Perl


+ Potentially good isolation/security, if properly 
   sandboxed; good per-request isolation 
   (fresh state for every request)


- Horrendous latency: OS process startup + 
binary load + script parse + connect to DB + 
parse configuration + initialize the universe + …


- Nonstarter for competitive modern web APIs

Site 1
PID 1001GET /a

POST /b

GET /
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- Should strive to reuse high-cost setup (e.g., parsing the script)


• We want good utilization (pack many sites onto one server): 
- Can’t afford a few GB of RAM for a VM for every site 
- Probably can’t afford an OS process for every site

(for now!)



The Problem: Desired Properties
Server

Site 1

Site 2

Site 3

Every site served from a single “global” process?

+ No startup latency: load code once, share setup + 
long-lived resources 
- Code is always present + a single function call 
  away!


+ Conceptually, overhead of a site is just an object 
in some data structure


+ Conceptually, overhead of a request is just an 
object holding its state


+ Site software has a simple model: “just write a 
function” 
- This is Function as a Service

PID 1000
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The Problem: Desired Properties

• We want good isolation for security: 
- Code for each site lives in some sort of sandbox with minimal attack surface 
- Code for each request starts fresh, with no “leftover state” that could leak 
   private data from other user


• Idea: what if there were a very simple “virtual CPU” to run the functions? 
- Give each function execution its own “memory” (array of a few KB or MB) 
- We could design it carefully to minimize attack surface —> good sandbox 
- Deterministic —> snapshots —> fast startup



The Problem: Desired Properties

!



The Problem: Desired Properties

!
Portable bytecode with low-level (byte-addressable) memory 
and explicit hostcall imports (capability sandboxing)
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!
C/C++


Rust


Go


Swift


Kotlin
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The Problem: Desired Properties

!JavaScript


Python

pre-load function bytecode into memory image



Wasm Snapshotting

init() 
  main = 
    parseScript() 
  request() 
  execute(main)
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• Secure!


• Wasm: Harvard architecture 
(separate code space, no codegen)


• Wasm: first-class call stack (stack 
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow


• Instance-per-request: no possible 
state leakage between executions

• JIT engine’s favorite activities


• generate code at runtime


• manage stack frames manually, 
implement O(1) unwind, on-stack 
replacement, multi entry + return 
points, jumps between IC stubs


• Warm up and specialize code over 
time (many executions/requests)
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Aside: “JIT Hooks for Wasm”?

• Straightforward adaptation:


• Add a Wasm hostcall (or core feature) to add a new function at runtime 
(accept only Wasm bytecode — preserve the sandboxing still)


• Work around other incongruities in machine model: O(n) unwind, tail calls 
for IC stubs, just don’t do OSR, …


• Really impressive results: 2x-11x (similar to native ISA baseline-compiler)


• Downside: requires test data and profiling run (nonstandard user experience) 
or compiler-in-the-loop and saving state across requests (JIT data structures)
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Fast Dynamic Languages: ICs for Late Binding

Key idea: late binding for execution semantics (dynamic types) 
becomes late binding in compilation strategy (indirect call via IC head)



CacheIR: Systematic Fast-Paths

• SpiderMonkey has a straight-line IR with specific 
“guard” (predicate) and “action” opcodes


• Engine is well-populated with many fast paths 
developed over the years


• Property accesses, including JS oddities (chain of prototype-chain guards)


• Special cases for calls to well-known functions (String.length(), etc)


• Hundreds of opcodes, ~hundreds-thousands of IC cases


• Let’s reuse this if we can!
See also: de Mooij et al. CacheIR: The Benefits of Structured Representation for Inline Caches. SPLASH 2023.



Compilation Levels

Level Data Required JS opcode 
dispatch ICs Optimization 

Scope
CacheIR 
dispatch

Codegen at 
Runtime?

Generic 
Interpreter JS bytecode interpreter none none — no

Baseline 
Interpreter

JS bytecode + 
IC stub cases interpreter dynamic 

dispatch
within one op 

(via IC) compiled yes

Baseline 
Compiler

JS bytecode + 
IC stub cases compiled dynamic 

dispatch
within one op 

(via IC) compiled yes

Optimizing 
Compiler

JS bytecode + 
warmed-up 

ICs
compiled inlined entire function compiled yes
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Level Data Required JS opcode 
dispatch ICs Optimization 

Scope
CacheIR 
dispatch

Codegen at 
Runtime?

Generic 
Interpreter JS bytecode interpreter none none — no

Portable 
Baseline 

Interpreter
JS bytecode interpreter dynamic 

dispatch none interpreter no
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Step 1: Portable Baseline Interpreter (PBL)

• New interpreter tier in SpiderMonkey: no codegen, but run ICs via interpreter 

• Key insight: this shifts the tradeoff; not all ICs will be profitable anymore 
—> “hybrid ICs”: (optionally) use ICs only for property accesses, calls


• This allows faster execution even for “code we have never met before” 
(eval() in production…)


• Implemented and upstreamed; used in production; 33% geomean speedup

https://bugzilla.mozilla.org/show_bug.cgi?id=1855321


Step 1: Portable Baseline Interpreter (PBL)

Bench           Base    PBL 
---- 
Richards         164    280 (1.71x) 
DeltaBlue        167    321 (1.92x) 
Crypto           453    566 (1.25x) 
RayTrace         498    786 (1.58x) 
EarleyBoyer      712   1070 (1.50x) 
RegExp           273    337 (1.23x) 
Splay           1293   2147 (1.66x) 
NavierStokes     684    763 (1.32x) 
PdfJS           2220   2512 (1.31x) 
Mandreel         189    233 (1.23x) 
Gameboy         1479   1774 (1.20x) 
CodeLoad       19765  18994 (0.96x) 
Box2D            943   1328 (1.41x) 
---- 
Overall          848   1127 (1.33x)



Step 1: Portable Baseline Interpreter (PBL)

• How does this help us compile JavaScript?!
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IC stub cases compiled dynamic 

dispatch
within one op 

(via IC) compiled yes
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JS bytecode + 
warmed-up 

ICs
compiled inlined entire function compiled yes
AOT: ✅

AOT: ✅

Compilation Phasing (“can we AOT?”)

Key insight: collect a corpus of “common ICs” (once) 
—> pushes PGO to engine developer, not engine user
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Compiler Backend

• Secure!


• Wasm: Harvard architecture 
(separate code space, no codegen)


• Wasm: first-class call stack (stack 
frames are VM-managed, no jumps/
unwind/…) and structured ctrl flow


• Instance-per-request: no possible 
state leakage between executions

• JIT engine’s favorite activities


• generate code at runtime


• manage stack frames manually, 
implement O(1) unwind, on-stack 
replacement, multi entry + return 
points, jumps between IC stubs


• Warm up and specialize code over 
time (many executions/requests)

Wasm is a weird architecture —> maintenance burden concerns 
… also, we already have an interpreter (PBL) with exactly the logic we want
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Compiler Backend?

switch(*pc++) { 
  case ADD: 
    auto a = pop(); 
    auto b = pop(); 
    push(a + b); 
    break; 
  case RET: 
    return pop(); 
}

ADD 
RET

func:

func() { 
  auto a = pop(); 
  auto b = pop(); 
  push(a + b); 
  return pop(); 
}

Key insight: Wasm is a small, introspectable, well-behaved IR; 
partial evaluation should be tractable (moreso than on native code)
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weval: Partial Evaluation of Wasm

• Key idea: produce specializations of functions in a Wasm module with respect 
to some constant inputs (namely, interpreted bytecode)


• Very very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original


• Gives us a compiler “for free” once we have an interpreter


• Related work: GraalVM for JVM (TruffleRuby, …)


• Main distinction in abstraction level: AST interpreter using Graal classes vs. 
general pre-existing interpreter in Wasm



Specialization Intrinsics

void call_function(function* f, int arg1, int arg2) { 
  interp(f->bytecode, arg1, arg2); 
}

void prepare_function(function* f) { 
  weval::weval( 
        &f->funcptr, &interp, 
        ConstantMemory(f->bytecode), 
        Runtime<int>(), Runtime<int>()); 
} 
                 
 
void call_function(function* f, …) { 
  if (f->funcptr) f->funcptr(…); 
  else interp(f->bytecode, …); 
}



Specialization Intrinsics

void call_function(function* f, int arg1, int arg2) { 
  interp(f->bytecode, arg1, arg2); 
}

1. asynchronous request (“fill in this function pointer later”); integrates with wizening


2. specialized function behaves exactly the same as original interp()


3. for each argument, we provide constant value or “runtime”
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void interp(bytecode* pc) { 
 
  switch (*pc++) { 
    case OP1: 
      … 
 
      break; 
    case OP2: 
      … 
 
      break; 
  } 
}
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      … 
 
      break; 
  } 
}

void interp(bytecode* pc) { 
  weval::push_context(pc); 
  switch (*pc++) { 
    case OP1: 
      … 
      weval::update_context(pc); 
      break; 
    case OP2: 
      … 
      weval::update_context(pc); 
      break; 
  } 
}



Specialization Intrinsics

void interp(bytecode* pc) { 
  weval::push_context(pc); 
  switch (*pc++) { 
    case OP1: 
      … 
      weval::update_context(pc); 
      break; 
    case OP2: 
      … 
      weval::update_context(pc); 
      break; 
  } 
}

1. “No magic”: only expand code 
where interpreter specifies via 
context mechanism


2. Partially evaluate iterations of the 
interpreter loop in a context-
sensitive way, where the context 
is the bytecode PC


3. … and that’s it.
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block2(…): block3(…): block4(…): block5(…): 

block6(…): 
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Generic Specialized
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values:  (Context, Value) -> Value 
workqueue: (Context, Block)
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The weval Transform
block1(…): 
  v1 = … 
  v2 = … 
  switch v2, block2, 
    block3, block4, 
    block5

block2(…): 

Generic Specialized
blocks:  (Context, Block) -> Block 
values:  (Context, Value) -> Value 
workqueue: (Context, Block)

1. Partially evaluate a block using 
a runtime/constant lattice


block3(…): block4(…): block5(…): 

block6(…): 

pub enum AbstractValue { 
    /// "top" default value; undefined. 
    Top, 
    /// A value known at specialization time. 
    Concrete(WasmVal), 
    /// A value that points to memory known at specialization time, 
    /// with the given offset. 
    ConcreteMemory(MemoryBufferIndex, u32), 
    /// A value only computed at runtime. The instruction that 
    /// computed it is specified, if known. 
    Runtime(Option<waffle::Value>), 
}



The weval Transform
block1(…): 
  v1 = … 
  v2 = … 
  switch v2, block2, 
    block3, block4, 
    block5

block2(…): 

Generic Specialized
blocks:  (Context, Block) -> Block 
values:  (Context, Value) -> Value 
workqueue: (Context, Block)

1. Partially evaluate a block using 
a runtime/constant lattice


2. Track context as part of flow-
sensitive state; update at 
intrinsics


3. At branches, enqueue targets
block3(…): block4(…): block5(…): 

block6(…): 
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Context: PC 0
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block6(…): 
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The weval Transform
block1(…): 
  v1 = … 
  v2 = … 
  switch v2, block2, 
    block3, block4, 
    block5

block2(…): block3(…): block4(…): block5(…): 

block6(…): 

Generic

block1(…): 
  v1 = … 
  v2 = iconst 3 
  goto block5

Context: PC 0

block5(…): 

block6(…): 

Context: PC 1
block1(…): 
  v1 = … 
  v2 = iconst 3 
  goto block5

block5(…): 

PC 0: ADD 
PC 1: GOTO 0

Resulting CFG is a convolution of interpreter’s CFG and bytecode’s CFG




The weval Transform
block1(…): 
  v1 = … 
  v2 = … 
  switch v2, block2, 
    block3, block4, 
    block5

block2(…): block3(…): block4(…): block5(…): 

block6(…): 

Generic

block1(…): 
  v1 = … 
  v2 = iconst 3 
  goto block5

Context: PC 0

block5(…): 

block6(…): 

Context: PC 1
block1(…): 
  v1 = … 
  v2 = iconst 3 
  goto block5

block5(…): 

PC 0: ADD 
PC 1: GOTO 0

Resulting CFG is a convolution of interpreter’s CFG and bytecode’s CFG


🤯




A Note on SSA

• SSA validity is defined in terms of the dominator tree (def dominates uses)


• weval transform breaks dominance


• naive approach (worked at first!): convert to “maximal SSA” before transform


• all live values passed via phis/blockparams at every block edge; then use 
only local values (“all other SSA is just an optimization of maximal SSA”)


• Much better: find “cut blocks” based on “highest ancestor with same 
context” (property depends on position of ctx-change intrinsics)


• Reduced value-number count in output code by 5x!



Other Intrinsics for Performance

• An interpreter will keep state in memory (“IC registers”) because of dynamic 
indexing; compiled code should be able to lift into SSA / dataflow in Wasm


• Intrinsics: 
    weval_read_reg(index) 
    weval_write_reg(index, value) 

• New intrinsics are OK when they have well-defined semantics and could be 
polyfilled without weval transform


• Initially tried to implement “memory renaming” —> very fragile (pointer 
escapes, semantics on calls?, …)



Value Specialization

• Ideally, implementation of a control-flow op looks like 
 
auto value = pop(); 
if (value) { 
  pc = A; 
  weval::update_context(pc); 
  goto dispatch; 
} else { 
  pc = B; 
  weval::update_context(pc); 
  goto dispatch; 
}


• Key property: edge to a different static block in bytecode should be a different static program point (otherwise edge 
resolution / block linkup doesn’t work)


• “Switch” opcodes are problematic — load PC from a table


• offer a “specialize context N ways with i=0..N-1” intrinsic



Portable Specialization Requests and Time-Travel

• weval specialization request is (funcptr, args) tuple — plain old data, 
independent of Wasm heap state


• Very important: bundle the content of constant memory, not just const ptr


• Collecting IC bodies: collect a bunch of weval requests, do them eagerly on 
subsequent wevalings, and inject a “look up by arg string” hashtable


• Also: makes deterministic weval caching very nice (processing speed!)



Requirements on Interpreter

• Function-level control flow in interpreter must match source language


• Because weval specialization is function-to-function and Wasm functions are first-
class


• Often this means disabling an “inline call frame” optimization


• We can’t support source-language tail calls until Wasm does


• We can’t support O(1) exception unwind until Wasm does 
(… do O(n) unwind for now)


• Bytecode must remain constant, and PC must be statically context-sensitively 
resolvable (no “indirect branch to arbitrary offset” opcode)



Other Optimizations

• By itself, weval removes opcode-dispatch overhead, and puts opcode cases 
next to each other statically (—> opt opportunities), but still copy+pastes 
inefficiencies and bloat into target code


• Good idea for faster code and faster weval processing: out-of-line special 
cases


• (Ab)use C++ template parameters to build several versions of interp(); 
specialized version tailcalls into generic version (non-wevaled) for error 
paths



Results
Bench           Base    PBL             wevaled PBL 
---- 
Richards         164    280 (1.71x)     444 (2.71x) 
DeltaBlue        167    321 (1.92x)     435 (2.60x) 
Crypto           453    566 (1.25x)    1231 (2.72x) 
RayTrace         498    786 (1.58x)     827 (1.66x) 
EarleyBoyer      712   1070 (1.50x)    1178 (1.65x) 
RegExp           273    337 (1.23x)     421 (1.54x) 
Splay           1293   2147 (1.66x)    2809 (2.17x) 
NavierStokes     684    763 (1.32x)    1336 (1.95x) 
PdfJS           2220   2512 (1.31x)    4150 (1.87x) 
Mandreel         189    233 (1.23x)     399 (2.11x) 
Gameboy         1479   1774 (1.20x)    3122 (2.11x) 
CodeLoad       19765  18994 (0.96x)   17735 (0.90x) 
Box2D            943   1328 (1.41x)    2134 (2.26x) 
---- 
Overall          848   1127 (1.33x)    1654 (1.95x)



Results
Bench           Base    PBL             wevaled PBL 
---- 
Richards         164    280 (1.71x)     444 (2.71x) 
DeltaBlue        167    321 (1.92x)     435 (2.60x) 
Crypto           453    566 (1.25x)    1231 (2.72x) 
RayTrace         498    786 (1.58x)     827 (1.66x) 
EarleyBoyer      712   1070 (1.50x)    1178 (1.65x) 
RegExp           273    337 (1.23x)     421 (1.54x) 
Splay           1293   2147 (1.66x)    2809 (2.17x) 
NavierStokes     684    763 (1.32x)    1336 (1.95x) 
PdfJS           2220   2512 (1.31x)    4150 (1.87x) 
Mandreel         189    233 (1.23x)     399 (2.11x) 
Gameboy         1479   1774 (1.20x)    3122 (2.11x) 
CodeLoad       19765  18994 (0.96x)   17735 (0.90x) 
Box2D            943   1328 (1.41x)    2134 (2.26x) 
---- 
Overall          848   1127 (1.33x)    1654 (1.95x)

Loop microbenchmark, latest optimizations, optimistic removal of some Wasm 
overheads (typed funcref table bounds checks, stacklimit checks): 
 
~4x speedup 
(native baseline compiler: 5.33x) 



What’s Left?

• “Fast dispatch” intrinsics — indirect calls in Wasm are very slow


• (sidenote: Igalia online-JIT emits direct calls to top IC when known)


• Intrinsics for operand stack — abstract-interpret push/pop


• Limited due to GC-safepoint constraints but still some opportunity


• Optimize Wasmtime/Cranelift with these workloads in mind


• Silly ABI hacks (pack i64s into i64x2 SIMD to get more arg registers…)


• … and build an optimizing JIT compiler with “cloud PGO”



Thanks! Questions?


